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Abstract

This paper examines an approach to model the vibrations of a deformed rolling tyre at low frequencies (below 500Hz).

The starting point for this approach is a finite element (FE) model of the tyre and the aim is to calculate the dynamic

response of a rolling tyre including the details of its complex build up. This allows to relate the tyre design parameters to its

vibro-acoustic properties. In this context, a modal approximation based on the eigenvalues and eigenvectors extracted

from the detailed FE model of the tyre seems a computationally efficient possibility. In the proposed approach the natural

frequencies and modeshapes of a deformed tyre are calculated in a standard FE package using the full (nonlinear) FE

model. Subsequently, this modal base is transformed to determine the response of the rotating tyre in a fixed (Eulerian)

reference frame. Furthermore, this approach makes it possible to define a receptance matrix for the rotating tyre. Results

from relatively simple tyre models show that the effects of rotation are modelled correctly and are in accordance with

results from literature.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Road traffic noise is becoming an increasingly big problem in densely populated areas. This noise consists
mainly of tyre/road noise and engine noise. In the past, engine noise has been the dominating noise source at
most constant driving speeds, but in the past decades this balance has shifted towards tyre/road noise. At
present, tyre/road noise is the dominating noise source for constant driving speeds of440 km=h [1]. Tyre/road
noise generation mechanisms are generally divided in two main groups [2]: vibrational mechanisms and
aerodynamical mechanisms. In the dominant frequency range for exterior noise (500–2000Hz [2]) both
vibrational and aerodynamical mechanisms make significant contribution [2,3]. For the interior noise in a car,
to which the occupants of the vehicle are exposed, tyre/road noise is also an important source, especially at
lower frequencies. Tyre vibrations (up to approximately 500Hz [2]) induce forces on the hub which are
transmitted via the suspension and the car structure to the interior, thus significantly contributing to the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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interior noise. The hub forces are caused by two main phenomena: belt vibrations excited by the tyre/road
contact and acoustic resonances of the air column inside the tyre, also known as cavity modes [2]. In the
present paper, only tyre vibrations are considered and the wheel is assumed infinitely stiff. However, the
proposed methodology can also be applied to a model including the wheel compliance and the acoustic cavity
in the tyre.

A number of analytical models have been proposed in the literature to model tyre vibrations. They can be
mainly categorized into ring models (variations across the width direction are not included) [4–6], plate models
(where the tyre curvature is neglected) [5,7–10] and cylindrical shell models [11–15]. Although the above-
mentioned models differ in complexity and applicability range, they all have in common that tyre dynamics
are captured in a few model parameters which can be obtained from measurements. Although analytical
models have proved to be valuable to study the general dynamic behavior of tyres, they are difficult to use in
the tyre design process. Recently, a promising approach referred to as Waveguide Finite Elements has been
proposed [16], where the cross-section of the tyre is modelled using finite element (FE) and the vibration field
in the circumferential direction is represented using waveguides.

In most of the above works the response of the tyre is determined in the tyre reference frame and the
rotation is included by letting the load travel along the tread. In the more recent publications, the tyre
response is either determined in a fixed-reference frame [13] or transformed from the tyre reference frame to
the fixed frame [14,10]. The conclusion is that in the fixed-reference frame the main influence of the rotation is
a kinematic shift of the dispersion curves which depends on the rotational velocity.

Regarding the application of the finite-element method (FEM) to tyres, only works where a modal
approach is used and/or the rotation of the tyre is considered will be mentioned here. Ref. [17] Chang and
Yang use a modal approach based on a FE model of a tyre to determine the response to a rotating load. They
show that resonances occur at frequencies different from the natural frequencies of the non-rotating tyre.
However no results regarding the response of the rotating tyre are shown. Furthermore the deformation of the
tyre due to ground contact is not taken into account.

In Ref. [18], Thompson discusses the influence of rotation on the dynamic response of train wheels using a
modal approach. He calculates the natural frequencies and modeshapes of the wheel using a FE model, which
allows to model the wheel in great detail without having to cope with excessive simulation times. He concludes
that due to the rotation a splitting of the eigenvalues occurs. Thompson determines the response of the
rotating wheel in a non-rotating reference frame, which allows to use the computed vibration velocities
directly in a sound radiation analysis. However in this model the deformation of the wheel due to the ground
contact is not taken into account, which is acceptable for train wheels but not for tyres.

In a recent publication Brinkmeier et al. [19] used the arbitrary Lagrange–Eulerian (ALE) formulation [20]
to determine the eigenvalues and modes of a stationary rolling tyre in ground contact, conclusions are similar
to those of Kim and Bolton [13]. Unfortunately, only limited results are derived. Main drawback of this
approach is that a special FE code is required for the ALE formulation, which is not included in standard FE
packages.

The present paper deals with a new approach to model the vibration response of a rolling tyre based
on a FE model of the tyre. Using a detailed FE model of a tyre is a feasible approach in the lower-frequency
range (dominant region for interior noise) that makes it possible to relate tyre design parameters to its
vibro-acoustic properties. Although the proposed methodology can also be applied to a FE model in-
cluding the wheel compliance and the acoustic cavity in the tyre, in this first step only tyre vibrations are
considered and the wheel is assumed infinitely stiff. The approach presented in this paper can be summarised
as follows:
�
 A modal approach is used, based on modal information extracted from a FE calculation. In this way, it is
possible to model the complex build-up of the tyre in detail.

�
 The natural frequencies and mode shapes of a deformed non-rotating tyre are calculated using a standard

FE package. Therefore, the influence of the ground contact on the dynamic properties of the tyre is taken
into account.

�
 The influence of the rotation is taken into account using a coordinate transformation. As a consequence the

stiffening of the tyre due to the centrifugal forces and the Coriolis effect are included in the model.
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�
 The response of the rotating tyre is determined in non-rotating (Eulerian) coordinates. This means that a
receptance matrix of the rotating tyre can be determined in a straight forward manner.

The present paper is organized as follows: in Section 2 previous work on the effect of rotation on tyre
dynamics is discussed. Then in Section 3 the proposed approach is presented. After that, in Section 4 some
results using the proposed approach are derived and compared to results from literature. Finally, the
conclusions and future work are summarised.

2. Background

The influence of rotation on the dynamic response of the tyre has been widely discussed in the literature. In
early works [21,22] the ‘‘bifurcation’’ effect on the natural frequencies of the tyre due to the Coriolis
acceleration is shown. More recently, in their study of a rotating cylindrical shell, Kim and Bolton [13]
conclude that for normal rotational velocities in tyres the effect of Coriolis acceleration is negligible and the
main influence of rotation is a kinematic shift of the dispersion curves which can be described with the
following equation:

f ¼ f s �
kfa

2p
O ¼ f s �

n

2p
O, (1)

where f is the rotation-compensated tyre natural frequency [Hz], f s is the stationary tyre natural frequency
[Hz], kf is the wavenumber [m�1], a is the tyre radius [m], O is the tyre rotational velocity [rad/s] and, n is the
number of wavelengths along the circumference [Hz].

They propose to use Eq. (1) to transform the response of the non-rotating tyre in the wavenumber–
frequency domain in order to obtain the response of the rotating tyre. This approach is also used in Ref. [10] to
transform the response of the tyre determined in the tyre-reference frame to the fixed-reference frame and is
referred to as Doppler shift. In Ref. [14] the Doppler shift is introduced by modifying the wave velocities in a
way similar to Eq. (1).

In his work on train wheels, Thompson [18] shows that when the wheel response is viewed from a
fixed-reference frame, the resonances at frequency or split into two peaks at or � nO, and this coincides
with the result in Eq. (1). He also shows that, if the response of the wheel is determined on a non-rotating
reference frame, a receptance matrix can be defined for the rotating wheel with resonances at frequencies
or � nO.

From the above results, it is clear that the effect of rotation cannot be neglected. As mentioned in the
introduction, using a modal approach to calculate the time-domain response of a tyre may be a
computationally cheap approach. However, if one simply determines the natural frequencies and modeshapes
of the non-rotating tyre and then models the rotation by rotating a force around the tyre (like in Ref. [17]), the
gyroscopic forces and the stiffening due to rotation are not included in the model and further the resulting
response of the tyre is calculated in a rotating frame. It is often convenient to find the response of the tyre in a
fixed, non-rotating reference frame, which means that a transformation from one frame to the other is needed.
Thompson in Ref. [18] has performed this transformation but he works with an axisymmetric model, which
has repeated eigenvalues. In this case, for each eigenfrequency, there are two eigenmodes with the same
number of nodal diameters n (except for n ¼ 0). The relative orientation of these two eigenmodes with respect
to each other is fixed but the absolute orientation is undetermined. In Thompson’s case, the transformation
from rotating to fixed frame is a simple coordinate transformation, which is a good approach for train wheels.
However, an important aspect of tyres is that, when loaded, there is only one eigenmode associated to a given
eigenfrequency and the orientation of each eigenmode is fixed due to the deformation at the contact with the
road. Therefore, the results in Ref. [18] are not directly applicable to tyres.

In Ref. [19], this is solved by using an ALE-approach (see Ref. [20]). Nackenhorst proposes a modified FE
formulation of the tyre which describes the dynamics of the rotating tyre in a fixed-reference frame. The
eigenvalues of the tyre are determined in a stationary rolling deformed state. Once these eigenvalues have been
determined, the transient response can be determined using the modal superposition principle. The approach
presented in the present paper is similar to the work in [19]. The main difference is that in the current approach
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a standard FE formulation is used to find a modal base for the deformed, non-rotating tyre and the dynamic
equations of the rolling tyre in the fixed-reference frame are formulated in terms of this modal base.

3. Theory

3.1. Definitions

In the following derivations, two coordinate systems are used: e1 and e2. e1 is the reference coordinate
system that is fixed to the center of the tyre and translates together with the tyre, but does not rotate. e2 is a
body-fixed coordinate system. This means that this system rotates along with the tyre at velocity O (see Fig. 1).
In these systems the angles a in the body-fixed frame and b in the reference frame are defined, where a certain
point k on the tyre is, bk ¼ ak þ Ot.

For the rotation matrix A21ðtÞ defined by

A21ðtÞ ¼

cos ðOtÞ sin ðOtÞ 0

� sin ðOtÞ cos ðOtÞ 0

0 0 1

2
64

3
75, (2)

the following equation holds

e2 ¼ A21e1, (3)

where O is the rotational velocity of the rotating reference frame. The time derivative of the rotation matrix is
given by

_A21ðtÞ ¼ X̂A21ðtÞ, (4)

where

X̂ ¼

0 O 0

�O 0 0

0 0 0

2
64

3
75 (5)

and the second derivative is given by

€A21ðtÞ ¼ X̂
2
A21ðtÞ. (6)
e1
x

e1
y

e 2
x

e2
y

t

Fig. 1. The coordinate systems where b ¼ aþ Ot.
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Without loss of generality, the excitation can be defined as a point force that acts at a fixed position in the
reference frame. In the reference frame e1, this force can be written as

fT1 e1 ¼ ½FxdðbÞ F ydðbÞ FzdðbÞ�e1, (7)

where d is the Dirac delta function. This leads to the following ‘‘rotating’’ force in the body-fixed frame:

fT2 e2 ¼ ½Fxdðaþ OtÞ F ydðaþ OtÞ F zdðaþ OtÞ�A12ðtÞe2, (8)

where

A12 ¼ ðA21Þ
�1
¼ ðA21Þ

T. (9)

3.2. Body-fixed-frame modes

As mentioned before for an undeformed tyre, if the stiffening due to rotation and the gyroscopic effects are
neglected, the rotation may be modelled as a force which rotates around the tyre. In that case, the response of
the (undamped) system can be determined from the following set of equations:

Mbf
2 ðaÞ€u2ðtÞ þ Kbf

2 ðaÞu2ðtÞ ¼ f2ðaþ Ot; tÞ, (10)

where u2ðtÞ is the displacement column and f2ðaþ Ot; tÞ is the rotating force in e2. The superscript bf in Eq.
(10) indicates that the body-fixed frame is considered.

Using the standard transformation to modal coordinates

ubf2 ðtÞ ¼ Ubf
2 gðtÞ, (11)

Eq. (10) can be written as

€gðtÞ þ VgðtÞ ¼ Ubf
2

T
f2ðaþ Ot; tÞ, (12)

where V is the matrix containing the eigenvalues and Ubf
2 ¼ UFEM is the matrix of modal columns determined

from a standard FE calculation.
This is a good approach for an unloaded tyre, where the orientation of the eigenmodes is not fixed and the

position of the nodal lines is entirely determined by the choice of excitation point, but it is not appropriate to
predict the response of a deformed rotating tyre. To directly determine the response of the tyre in the reference
frame and be able to predict the response of a deformed rotating tyre, another approach has to be used and it
is described in Section 3.3.
Fig. 2. Example of two degenerated modes with n ¼ 2.
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3.3. Reference frame-fixed modes

In the undeformed state a tyre has repeated eigenvalues and for each eigenfrequency, there are two different
eigenmodes. These two eigenmodes have identical shapes, but are rotated 180=2n degrees with respect to each
other, where n is the number of waves along the circumference, see, e.g. Fig. 2.

This means that a nodal diameter of one modeshape is an anti-nodal diameter of the other. The absolute
orientation of this eigenmode pair is arbitrary and completely determined by the choice of excitation positions.
When the tyre is excited by a point force the two modes of the same frequency combine in such a way that the
excitation force always acts at an anti-nodal diameter.

However, when the tyre is loaded and in contact with the ground, the eigenvalues of the system are all
distinct and there is only one eigenmode associated to each eigenfrequency. Furthermore, the modeshapes
have a clear orientation due to the initial deformation, and the classification of modeshapes in terms of the
number of nodal diameters is not straightforward. For a loaded tyre, the modeshapes are in fact fixed to the
reference frame e1, as are the mass and stiffness matrix.

A mode /rf which is fixed to the reference frame (indicated by the subscript rf) can be described as follows:

/rf
¼ /rf

1

T
e1 ¼

fxðbÞ

fyðbÞ

fzðbÞ

2
64

3
75
T

e1 ¼

fxðaþ OtÞ

fyðaþ OtÞ

fzðaþ OtÞ

2
64

3
75
T

A12e2. (13)

This means that a mode which is constant in the reference frame is time dependent in the body fixed frame.
The matrices Urf

i containing m modeshapes can now be defined by

Urf
i ¼ ½

/rf
i;1

. . . /rf
i;m � with i ¼ 1; 2 (14)

which for the reference coordinate system (e1) becomes

/rf
1;m
¼

fx;m
ðbÞ

fy;m
ðbÞ

fz;m
ðbÞ

2
664

3
775 ¼ /FEM;m

(15)

and for the body-fixed coordinate system (e2)

/rf
2;m
¼ A21

fx;m
ðaþ OtÞ

fy;m
ðaþ OtÞ

fz;m
ðaþ OtÞ

2
664

3
775. (16)

For the mass matrix, this means

Mrf
1 ðbÞ ¼ A12ðOtÞMrf

2 ðaþ OtÞA21ðOtÞ (17)

and for the stiffness matrix

Krf
1 ðbÞ ¼ A12ðOtÞKrf

2 ðaþ OtÞA21ðOtÞ. (18)

When using reference frame-fixed modes Mrf
1 ðbÞ ¼MFEM and Krf

1 ðbÞ ¼ KFEM. The equations of motion of the
tyre in the body fixed, Lagrangian coordinates are given by

Mrf
2 ðaþ OtÞ€u2ðtÞ þ Krf

2 ðaþ OtÞu2ðtÞ ¼ f2ðaþ Ot; tÞ (19)

The above system of equations is the same as Eq. (10) except for the mass and stiffness matrices which are now
fixed to the reference frame. The variable u2ðtÞ can be transformed into the reference coordinate system by
using the material derivative

D

Dt
¼

q
qt
þ O

q
qb

, (20)
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where the left-hand side represents the time derivative in the body-fixed (Lagrangian) coordinates, the first
term on the right-hand side is the time derivative in the reference (Eulerian) coordinates, O is the rotational
speed and b is the circumferential angle in the reference frame. After applying Eq. (20), Eq. (19) can be
expressed as

Mrf
2

D2u2ðb; tÞ
Dt2

þ Krf
2 u2ðb; tÞ ¼ f2ðb; tÞ. (21)

Transforming back to the reference coordinates and pre-multiplying by Urf
1 ðbÞ

T leads to (keeping in mind
Eq. (17) and that A12X̂A21 ¼ X̂)

€gðtÞ þ 2PðOÞ_gðtÞ þ ðSðOÞ þ VÞgðtÞ ¼ Urf
1

T
ðbÞf1ðtÞ, (22)

where

PðOÞ ¼ Urf
1

T
ðbÞMrf

1 X̂Urf
1 ðbÞ þ O

qUrf
1 ðbÞ
qb

� �
, (23)

SðOÞ ¼ Urf
1

T
ðbÞMrf

1 X̂
2
Urf

1 ðbÞ þ 2OX̂
qUrf

1 ðbÞ
qb

þ O2 q
2Urf

1 ðbÞ

qb2

� �
(24)

and Urf
1 ðbÞ ¼ UFEM are the modeshapes determined in the FE analysis. The matrix P (skew-symmetric)

accounts for the gyroscopic forces and the matrix S (symmetric) includes the stiffening effect due to rotation.
The system of equations given in Eq. (12) is an uncoupled set of equations, but this is no longer the case in

Eq. (22). The matrices P and S are not diagonal, which means that Eq. (22) is a system of coupled equations. If
necessary, a second eigenvalue analysis can be performed on Eq. (22) to determine the natural frequencies and
modeshapes of the rotating tyre and to find a new set of uncoupled equations.

Additionally, proportional damping can be included in the formulation leading to the following system of
equations (the derivation can be found in Appendix A):

€gðtÞ þ ð2PðOÞ þDmodÞ_gðtÞ þ ðSðOÞ þDmodPðOÞ þ VÞgðtÞ ¼ Urf
1

T
ðbÞf1ðtÞ, (25)

where Dmod is the diagonal modal damping matrix. The additional term DmodPðOÞ makes the stiffness matrix
non-symmetric and contributes to the rolling resistance of the tyre [23].

The response in the reference frame can now directly be determined from

urf1 ðtÞ ¼ Urf
1 gðtÞ. (26)

If Eqs. (22) and (26) are transformed to the frequency domain and combined, the receptance matrix of the
rotating tyre can be determined:

Hrf
1 ðo;OÞ ¼ Urf

1 ½�o
2Iþ ioð2PðOÞ þDmodÞ þ ðSðOÞ þDmodPðOÞ þ VÞ��1Urf

1

T
, (27)

and hence

urf1 ðo;OÞ ¼ Hrf
1 ðo;OÞF1ðoÞ. (28)

Eq. (28) relates a force acting at any point on the tyre to the displacement at every point on the tyre. In order
to calculate the vibrational response of a rolling tyre, the forces that arise from the tyre/road contact must be
determined. Since the forces outside the contact area are zero, it is possible to solve the contact problem using
only a small sub-matrix of Hrf

1 ðo;OÞ defined by those points of the tyre that are likely to come into contact
with the road. However, the contact between the tyre and the road is of nonlinear nature and the description
of the vibrational properties of the tyre should be formulated in the time-domain. One possibility is to perform
an Inverse Fourier Transform on the sub-matrix of Hrf

1 ðo;OÞ to determine the Green’s functions (impulse
response) of the tyre. Then only this sub-matrix is needed to calculate the contact forces and the response of
the whole tyre can be determined afterwards using the full matrix. Alternatively, Eq. (22) can be directly used
to determine the response of the rotating tyre in the time-domain.
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3.4. Discussion

It has been shown that reference frame-fixed modes should be used to model the behavior of a rotating tyre
when a modal approach based on the natural frequencies and modeshapes of a loaded tyre is used. These
modes are fixed in the reference frame, but rotate along with the excitation in the body-fixed frame. The
approach presented in Section 3.3 has some interesting properties:
�
 A receptance matrix Hrf
1 ðo;OÞ can be defined for the rotating tyre. When calculating the response due to a

roughness profile, only the points likely to come into contact with the road have to be taken into account.
The total response can be calculated afterwards.

�
 A nonuniform mesh can be used, which makes it possible to model the contact area with a very fine mesh

and use a coarser mesh for the rest of the tyre.

�
 The response in this reference frame can be used directly to calculate the resultant forces on the axle

(responsible for the interior structureborne noise).

�
 A full 3D-contact model can be combined with the 3D-description of the tyre dynamic behavior in the

proposed approach.

4. Results

To test the approach described in the previous section, two models are used. A 2D-ring model and a slightly
more complex 3D model (see Fig. 3). In these models, a noncontact situation has been considered (both
models are axisymmetric) in order to be able to compare the results to literature (mainly Ref. [13]).

For the ring models, 200 beam elements have been used (the figure shows a model with only 72 beam
elements) in the FE calculation which resulted in a 600 dof model. In total, 100 modes have been used with
frequencies up to 2000Hz. The parameters of the ring model can be found in Table 1. For the 3D model, 3700
brick elements have been used, resulting in 7600 dofs. An inflation pressure of 106 Pa has been used, and 100
modes have been determined with frequencies up to �700Hz. The parameters of the 3D model (Table 2) have
been chosen to have the lower resonance frequencies in the same range as it is found for tyres. It should be
noted that, although the above parameters models are not realistic for tyres, they suffice to illustrate the
validity of the proposed methodology for the analysis of a rotating tyre.

4.1. 2D Ring model

To clarify the theory with the reference frame fixed modes from Section 3.3, an analytical description of the
2D-ring is used. It is wellknown (e.g., Ref. [24]) that the radial displacements of the modeshapes of a ring are
u1 ¼ cosðnaÞ and u2 ¼ sinðnaÞ. Here n is the number of waves along the circumference.
Fig. 3. (a) The FE model of the ring. Here shown with only 72-beam elements. (b) Cross-section 3D FE model.
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Table 1

Parameters of the ring model

Parameter Definition Value

a Radius of the ring 0.3m

E Elastic modulus of the ring material 2 � 109 N=m2

n Poisson ratio of the ring material 0.3

r Density of the ring material 7800 kg=m3

r Radius of the circular cross-section 0.005m

Table 2

Parameters of the 3D model

Parameter Definition Value

a Outer tyre radius 0.3m

d Tread/Sidewall thickness 0.01m

E Elastic modulus of the tread and sidewall material 4:8 � 108 N=m2

n Poisson ratio of the tread and sidewall material 0.45

r Density of the material 1200 kg=m3

r Outer radius of the circular cross-section 0.1m

I. Lopez et al. / Journal of Sound and Vibration 307 (2007) 481–494 489
These analytical modeshapes are used to calculate the eigenvalues in the body-fixed frame and in the
reference frame. In the body-fixed frame, the body-fixed modeshapes are written as

Ubf
2 ¼ ½ cos ðnaÞ sin ðnaÞ �, (29)

and the reference frame fixed modes Urf
1 are given by

Urf
1 ¼ ½ cos ðnbÞ sin ðnbÞ �. (30)

The diagonal matrix V in which the eigenfrequency is associated to these modeshapes is given by

V ¼
o2

k 0

0 o2
k

" #
, (31)

where ok is the eigenfrequency. We can now write the equations in state-space form and the eigenvalues in the
fixed body frame can be determined by

detðlI� Bbf
2 Þ ¼ 0, (32)

where

Bbf
2 ¼

0 I

�V 0

� �
. (33)

This leads to the (trivial) eigenvalues: l ¼ ½ iok iok �iok �iok �.
For the reference frame-fixed modes in Eulerian coordinates, the following set of equations can be found:

€gðtÞ þ 2O
0 n

�n 0

� �
_gðtÞ þ ðV� n2O2IÞgðtÞ ¼ Urf

1

T
f1 (34)

and the eigenvalues in the reference frame can be determined by

detðlI� Brf
1 Þ ¼ 0, (35)
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where

Brf
1 ¼

0 I

n2O2I� V
0 �2On

2On 0

� �2
64

3
75. (36)

Equation (35) leads to the following eigenvalues:

l ¼ ½iðok � nOÞ iðok þ nOÞ � iðok � nOÞ � iðok þ nOÞ�,

which clearly shows the splitting of the eigenvalues. Similar conclusions can be derived from the 2D-FE
ring model. As discussed in Section 2, the rotation of the tyre leads to a shift of the dispersion curves. To
show the splitting of the eigenvalues on the dispersion curves, the FRFs of all nodes on the ring in the
radial direction are determined using Eq. (28) for a radial excitation at b ¼ 0 in the frequency range
0–1000Hz. The damping matrix is chosen by D ¼ aRM

rf
1 (Rayleigh damping), with aR ¼ 750 s�1.

Subsequently, for each frequency for which the steady-state response is calculated, a spatial FFT is
performed for the ‘‘upstream’’ (bo0) half and the ‘‘downstream’’ (b40) half of the ring. This leads to
the continuous dispersion plots shown in Fig. 4. The positive wave numbers correspond to waves travel-
ling in the direction b40 and the negative wave numbers correspond to waves travelling in the direction
bo0. The triangular symbols in the figures indicate the eigenfrequencies determined in the eigenvalue
analysis for O ¼ 0. The square symbols are the corrected eigenvalues using the equation of Kim and Bolton
Eq. (1).

By comparison of Fig. 4(b) with Fig. 4(a), the asymmetry of the dispersion plots due to the tyre rotation can
be clearly seen for frequencies above approximately 100Hz. It is also clear that the tilting of the dispersion
plots agrees with the prediction of the kinematic shift from Eq. (1). Below 100Hz standing wave phenomena
corresponding to the patterns of the lower three modes are observed. This behavior is not representative for
the phenomenon of standing waves in real tyres, which occurs at higher rotational velocities and involves
higher-order modes [25].

Figs. 5 and 6 show the FRF of the ring at selected frequencies (250Hz, 500Hz and 1000Hz) for two
different values of the rotational speed as a function of circumferential position (left) and wave number (right).
The excitation force acts in the radial direction at b ¼ 0, and the response is in the radial direction. As before,
damping has been modelled as Rayleigh damping with aR ¼ 750 s�1. From Figs. 5(a) and 6(a), it can be
concluded that the vibration levels are higher in the downstream direction (the positive circumferential
Fig. 4. Dispersion characteristics of the ring model for aR ¼ 750 s�1. (a) O ¼ 0 rad=s, (b) O ¼ 100 rad=s.
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(a) circumferential position (deg), (b) wavenumber (m�1).
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positions) and this effect becomes clearer at higher rotational velocities. This result is in agreement with the
observations made in Ref. [13]. However, it should be noted that this conclusion only applies to the simplified
model studied here and not to tyres in general. It is well known [25] that if the speed of the waves propagating
in the upstream direction coincides with the rotation velocity of the tyre, a standing wave pattern appears and
the above conclusion is no longer valid.

It is interesting to observe the FRF as a function of the wave number in Figs. 5(b) and 6(b), where positive
wave numbers represent waves travelling ‘‘downstream’’ (b40), and negative wave numbers represent waves
travelling ‘‘upstream’’ (bo0). The vibration field is dominated by two main waves having different
wavenumbers and opposite signs (therefore travelling in opposite directions). This means that these two waves
form a vibration pattern which is rotating. A similar result can be found in Ref. [10]. However, unlike in
Ref. [10], the peaks corresponding to these dominant waves are still clearly visible for higher frequencies,
which is due to the type of damping chosen for the ring model. For more realistic tyre parameters, it has been
shown that the peaks become less sharp as frequency increases [10].
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4.2. Simplified 3D-tyre model

In the previous sections, the theory from Section 3.3 has been verified using a 2D-ring model. In this section,
it is shown that for the 3D model, the splitting of frequencies is also correctly modelled.

Fig. 7(a) shows the point admittance in the radial direction at a point on the middle circle of the 3D model
for rotational velocities of 0 and 20p rad/s. In the figure, index 1 denotes a mode with n ¼ 1. Index 1� denotes
the two modes which appear when the tyre is rotating. These modes are shifted �20p=2p ¼ �10Hz with
respect to the non-rotating situation. Indices 2 and 2� denote modes with n ¼ 2 for the nonrotating and
rotating tyre, respectively. The latter are shifted �2 20p=2p � �20Hz. Index 3 denotes a modeshape with
n ¼ 0. The frequency of this mode does not shift as a result of rotation as there is no variation of this
modeshape along the circumference. The effect of rotation on the eigenfrequencies of the tyre is also shown in
Fig. 7(b). In this figure the eigenvalues corresponding to the 10 first eigenmodes are shown. Again the splitting
of the eigenvalues can be seen. The slope of the lines is determined by the number of wavelengths along the
circumference (or the wave number kf), which is in agreement with Eq. (1).

5. Conclusions

This paper examines an approach to model the vibrations of deformed rotating tyres in the lower frequency
range. Determining the eigenvalues and eigenmodes of a detailed FE-model of the tyre and then using these to
construct a modal base of the tyre seems a computationally efficient way of calculating the dynamic response
of the tyre taking its complex build-up into account. The presented methodology allows for the calculation of
the response of the rotating tyre in a fixed (Eulerian) reference frame, including the influence of gyroscopic and
centrifugal forces.

In the approach proposed here, the large deformations due to the stationary tyre loading and the small-scale
vibrations originated by the tyre/road interaction are treated separately. This enables the determination of the
large stationary deformations with the full equations and possibly nonlinear material properties, while the
small, transient displacements are superposed on this state in a linear sense by using a limited number of
modes. In this way, the natural frequencies and modeshapes of a deformed tyre can be determined in any
standard FE package using the full model. Using the modal base thus acquired, the response of the rotating
tyre can be found by applying a coordinate transformation and a transfer function can be calculated from a
force at any point in the contact patch to the response at any point on the tyre (or to the force transmitted to
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the axle). Furthermore, the presented approach can be combined with a full 3D-contact model, which will be
the subject of future research.

The modelling approach presented in this paper has some drawbacks:
�
 A good FE model of a tyre is needed.

�
 In Eq. (23) and (24) the full mass matrix of the FE model is used. For a large model, exporting the mass

matrix and computing P and S using Eq. (23) and (24) could be a serious problem. However, it should be
kept in mind that these matrices only have to be computed once and that their final size is equal to the
number of modes chosen.

The proposed methodology has been applied to two relatively simple models showing that the effects of
rotation are modelled correctly and are in accordance with results from the literature.

Appendix A. System equations including damping

To be able to include damping in the new approach, a damping matrix Drf
1 of dimensions (ndof � ndof ) is

required. When using proportional damping, this matrix can be determined from Dmod by using the following
identities:

Urf
1

T
Mrf

1 Urf
1 ¼ I (A.1)

Urf
1

T
Drf

1 Urf
1 ¼ Dmod. (A.2)

The above equations can be used to write

Urf
1

T
Drf

1 Urf
1 ¼ Urf

1

T
Mrf

1 Urf
1 DmodU

rf
1

T
Mrf

1 Urf
1 , (A.3)

which means that

Drf
1 ¼Mrf

1 Urf
1 DmodU

rf
1

T
Mrf

1 . (A.4)

Including Drf
2 _u2ðb; tÞ in Eq. (19) and transforming to eulerian coordinates with Eq. (20) leads to (the derivation

is only shown for the extra damping term in Eq. (19))

Drf
2

D_u2ðbt; tÞ

Dt
¼ Drf

2

q_u2ðbt; tÞ

qt
þ O

q_u2ðbt; tÞ

qb

� �
, (A.5)

which after transforming back to reference coordinates and pre-multiplying with Urf
1

T
leads to

Urf
1

T
Drf

1 Urf
1 _gðtÞ þUrf

1

T
Drf

1 X̂Urf
1 ðbÞ þ O

qUrf
1 ðbÞ
qb

� �
gðtÞ. (A.6)

Finally, by using Eq. (23), Eq. (A.1) and Eq. (A.4) the above equation can be written as

Dmod _gðtÞ þDmodPðOÞgðtÞ, (A.7)

leading to the following full equations including modal damping:

€gðtÞ þ ð2PðOÞ þDmodÞ_gðtÞ þ ðSðOÞ þDmodPðOÞ þ VÞgðtÞ ¼ Urf
1

T
ðbÞf1ðtÞ. (A.8)

Therefore, proportional damping can be included in this approach with little extra computational cost, since
PðOÞ has already been calculated and Dmod can easily be constructed from the modal damping ratios and
eigenfrequencies.
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